SynVivo

SynVivo is a synthetic in vivo vascular environment on a microfluidic chip. “The whole idea was to come up with a better in vitro model which actually makes use of the features and the geometry and the flow [of a real animal],” says lead developer Prabhakar Pandian.
The SynVivo platform, launched in December 2012, consists of about 20 standardized chips that mimic the different vascular geometries of hamster, rat, and mouse. Several chips also contain specialized cavities for seeding cells of a particular tissue type, such as neurons, hepatocytes, or tumor cells, which scientists can use to study interactions with drugs or other circulating compounds. The chips run from $50–$150. The company will even work with researchers to develop a customized chip for an additional cost.
“In the early stages of this, I thought this would be a tall order,” says Temple University biomedical engineer Mohammad Kiani, who is collaborating with the company to validate the platform, but is not financially tied to it. “But as we’ve gotten into it, we have realized that it can be done.”
To construct a synthetic in vivo environment, researchers simply coat the channels of the microchip with an appropriate substrate, such as fibronectin, and then seed it with cells. Fluid then moves through the system to mimic natural blood flow.
“We are very surprised that we are getting such good agreement between what we see in vivo and what’s being done in vitro,” says Kiani, who is using the technology to look at the interaction of human leukocytes and endothelial cells, to investigate therapeutic approaches to disruptions of the blood-brain barrier in children, and to replicate the interaction of tumor cells with endothelial cells during metastasis. “I think it has a lot of potential.”

SCHADT: This product can recreate realistic human microvascular networks within which cells of interest can be cultured and studied in a more realistic setting.

LUSTIG: This is the next step in microvascular microfluidic assay systems, enabling innovative cell-migration and drug-distribution assays that are difficult to model in other ways.
Share on Google Plus

About Unknown

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.
    Blogger Comment
    Facebook Comment

0 comments: