NumaTac

Among its many other functions, human skin helps sense collisions when they occur. An elbow banged into a door results in a signal from the brain instructing the elbow to stop colliding with the hard surface. Robots are generally built with a metal or hard plastic exterior, which means if they hit something they are not supposed to, they have no way of sensing that they should stop or go back. Their machinery could be damaged before the action that caused the collision stops.
NumaTac pads, developed by SynTouch LLC, are made of open-cell polyurethane foam—the same material used to construct injection-molded seat cushions—and contain sensors that allow robots to detect and respond to collisions. The NumaTac pads “are there when needed, like air bags. They hang out, they’re flexible, and they can be made in arbitrary shapes for whatever protection you need,” says Gerald Loeb, SynTouch CEO and professor of biomedical engineering at the University of Southern California. The price of a NumaTac pad is specific to the application and to the design of the communication network between robot and sensors.
As scientists “start to put robots out into the workplace, this will become important,” says Loeb. In simulations SynTouch has shown that, with NumaTac coverage, a robotic arm that makes movements about the scale of those made by a human arm would have sufficient time to stop before it is destroyed by a collision with a rigid object. Without NumaTac, Loeb says, that robot could wind up a heap of “mangled metal.”

MUKHOPADHYAY: Embedding robots with a sense of touch, with the notion that tactile feedback is critical for surgical robots.

LUSTIG: This new tactile sensor is being used in prosthetic devices and surgical robots to enhance sensitivity and improve function.
Share on Google Plus

About Unknown

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.
    Blogger Comment
    Facebook Comment

0 comments: