Quantitative Multiplex Reference Standard

Validating the results yielded by next-generation sequencing and related technologies is a significant hurdle for genomics researchers. The Quantitative Multiplex Reference Standard provides scientists with well-characterized samples of cell line or DNA variants that they can use to validate the techniques they’re employing in the lab. “[It was] very hard to get consistent mixing [of cell lines] . . . and there was no guarantee that the second time we’d go back we’d get exactly the same mix,” says cancer genomicist Erich Jaeger, who works on product development at sequencer manufacturer Illumina. The Quantitative Multiplex Reference Standard, made by Horizon Diagnostics, can cut out the time-consuming and inconsistent step of making samples of known composition. “It just really made our lives a lot simpler to have something we could go to and know that we would always be able to get these variants [at the same frequencies],” Jaeger says.
The Quantitative Multiplex Reference Standard, launched in March 2013, contains a total of 30 PCR-validated mutations and can be purchased as a mix of cell lines carrying different variants, embedded in paraffin to mimic patient samples. In this form, the validation “can be included right from the beginning in terms of sample preparation,” says Chris Thorne, Reagents Group Team Leader at Horizon. “[Researchers] can work with samples throughout the whole process.” Alternatively, the product is sold as a solution of DNA containing variants of different frequencies. Paraffin-embedded sections of cells start at $40, while a solution containing 100 ng of DNA solution can be purchased for $120.

GIDDINGS: Robust and validated reference standards are the essential prerequisite to enable the kind of tumor profiling that can now be imagined and which is poised to be the benchmark of the future.

SCHADT: One of the first commercially available reference panels that will enable an accurate assessment of the quality of an NGS [next-generation sequencing] oncology-based assay across a broad range of detection thresholds for cancer-relevant mutations.
Share on Google Plus

About Unknown

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.
    Blogger Comment
    Facebook Comment

0 comments: