Nanoparticles have proved useful for delivering cancer-killing therapies.
Cornell University scientists, for example, were able to get tiny particles of gold alloy into the bloodstream and to cancer cells, where it can be heated up to kill them. The Cornell scientists chose gold — No. 79 on the Periodic Table — because of the ease in which it absorbs infrared heat. The researchers figured out how to attach the gold to colorectal-cancer-cell-seeking antibodies that delivered the gold to the cancer.
“It's a very, kind of cool, elegant solution,” says Folk, “but gold's pretty inert, so what happens afterward? How is the gold taken from the body, and what organs is it interacting with? You have to look at the entire cycle.”
“It's a very, kind of cool, elegant solution,” says Folk, “but gold's pretty inert, so what happens afterward? How is the gold taken from the body, and what organs is it interacting with? You have to look at the entire cycle.”
Meanwhile, MIT chemical engineers have designed nanoparticles that carry the cancer drug doxorubicin, as well as short strands of RNA that can shut off one of the genes that cancer cells use to escape the drug. The MIT researchers were searching for ways to treat an especially aggressive form of breast cancer.
0 comments:
Post a Comment